博客
关于我
714. 买卖股票的最佳时机含手续费
阅读量:789 次
发布时间:2019-03-25

本文共 1206 字,大约阅读时间需要 4 分钟。

在股票交易问题中,使用动态规划(DP)是一种有效的方法来找到最大利润。以下是一个优化后的解决方案,模仿了技术人员的写作风格,避免使用AI特有的表达方式。
问题描述:
我们需要计算从买入股票到卖出的过程中,扣除手续费后的最大利润。DP方法中,dp[i][0]表示第i天不持有股票的最大收益,dp[i][1]表示第i天持有股票的最大收益。通过这个状态机,我们可以跟踪每一天的交易状态。
解决方案:
因为买入时需要支付手续费,所以特殊处理。到达当天不持有股票的状态时,只能是前一天持有并且卖出,或者前一天不持有。此外,持有股票的时候,可能是今天从不持有变为持有,或者是从持有延续。
初始化:
dp[0][0] = 0:第0天不持有股票的收益为0。
dp[0][1] = -fee - prices[0]:第0天持有股票的收益为第一天购入价格减去手续费。
递推关系:
当天不持有股票的状态:dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
当天持有股票的状态:dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i])
最终结果:返回dp[prices.size()-1][0],即最后一天不持有的最大收益。
实现代码:
#include
using namespace std;
class Solution {
public:
int maxProfit(vector
& prices, int fee) {
vector
> dp(prices.size(), vector
(2));
dp[0][0] = 0;
dp[0][1] = -fee - prices[0];
for(int i = 1; i < prices.size(); ++i) {
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i]);
}
return dp[prices.size()-1][0];
}
};

这段代码通过动态规划计算了股票交易的最大利润。每一步根据前一天的状态决定当前天的操作,从而最大化利润。对于每一天,计算两种状态的利润:持有和不持有,并选择最优解。

这个方法的时间复杂度为O(n),空间复杂度为O(n),适合处理较长的股票价格序列。

转载地址:http://vvjuk.baihongyu.com/

你可能感兴趣的文章
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
Netty事件注册机制深入解析
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0057---Netty群聊系统服务端
查看>>
Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
查看>>
Netty工作笔记0063---WebSocket长连接开发2
查看>>